菜单 English Ukrainian 俄语 主页

面向爱好者和专业人士的免费技术图书馆 免费技术库


科技新闻,电子新奇
免费技术库 / 新闻提要

到 2030 年,日本五分之一的汽车将实现自动驾驶

04.03.2017

日本经济产业省制定了在日本普及自动驾驶汽车的计划。 到 2030 年,全国 20% 的汽车应该是无人驾驶的。

今年,日本政府已经批准在人口密度相对较低的地区使用自动驾驶汽车。 2020年,无人驾驶出租车将在东京奥运会上运行。 2025年,自动驾驶汽车将被允许在高速公路上行驶,2027年——小城镇的道路上,2030年——全国所有道路上。

日本最大的汽车制造商丰田汽车计划在明年开始将其自行设计的自动驾驶汽车商业化。

<< 返回: 玫瑰晶体管和电容器 05.03.2017

>> 转发: 实验条件下获得的超硬状态 04.03.2017

科技、新电子最新动态:

交通噪音会延迟雏鸡的生长 06.05.2024

现代城市中我们周围的声音变得越来越刺耳。然而,很少有人思考这种噪音如何影响动物世界,尤其是像尚未从蛋中孵出的小鸡这样娇嫩的动物。最近的研究揭示了这个问题,表明它们的发展和生存会产生严重后果。科学家发现,斑马小菜斑幼鸟暴露在交通噪音中会严重影响其发育。实验表明,噪音污染会显着延迟它们的孵化,而那些孵化出来的雏鸟则面临着许多健康问题。研究人员还发现,噪音污染的负面影响也延伸到了成年鸟类身上。繁殖机会减少和繁殖力下降表明交通噪音对野生动物产生长期影响。研究结果凸显了需要 ... >>

无线音箱三星音乐框 HW-LS60D 06.05.2024

在现代音频技术领域,制造商不仅追求无可挑剔的音质,而且追求功能与美观的结合。这一方向的最新创新举措之一是在 60 年三星世界活动上推出的新型三星音乐框架 HW-LS2024D 无线扬声器系统。三星 HW-LS60D 不仅仅是一个扬声器系统,它还是框架式声音的艺术。 6 扬声器系统与杜比全景声支持和时尚相框设计的结合使该产品成为任何室内装饰的完美补充。新款三星音乐框架采用先进技术,包括可在任何音量级别提供清晰对话的自适应音频,以及可实现丰富音频再现的自动房间优化。这款扬声器支持 Spotify、Tidal Hi-Fi 和蓝牙 5.2 连接,以及智能助手集成,可满足您的需求。 ... >>

控制和操纵光信号的新方法 05.05.2024

现代科学技术发展迅速,每天都有新的方法和技术出现,为我们在各个领域开辟了新的前景。其中一项创新是德国科学家开发了一种控制光信号的新方法,这可能会导致光子学领域取得重大进展。最近的研究使德国科学家能够在熔融石英波导内创建可调谐波片。这种方法基于液晶层的使用,可以有效地改变通过波导的光的偏振。这一技术突破为开发能够处理大量数据的紧凑高效光子器件开辟了新的前景。新方法提供的偏振电光控制可以为新型集成光子器件提供基础。这为以下人员提供了绝佳的机会: ... >>

Primium Seneca 键盘 05.05.2024

键盘是我们日常计算机工作中不可或缺的一部分。然而,用户面临的主要问题之一是噪音,尤其是对于高端型号。但随着 Norbauer & Co 推出的新型 Seneca 键盘,这种情况可能会改变。 Seneca 不仅仅是一个键盘,它是五年开发工作的成果,创造了理想的设备。这款键盘的每个方面,从声学特性到机械特性,都经过仔细考虑和平衡。 Seneca 的主要特点之一是其静音稳定器,它解决了许多键盘常见的噪音问题。此外,键盘支持各种键宽,方便任何用户使用。尽管 Seneca 尚未上市,但预计将于夏末发布。 Norbauer & Co 的 Seneca 代表了键盘设计的新标准。她 ... >>

世界最高天文台落成 04.05.2024

探索太空及其奥秘是一项吸引世界各地天文学家关注的任务。在高山的新鲜空气中,远离城市的光污染,恒星和行星更加清晰地揭示它们的秘密。随着世界最高天文台——东京大学阿塔卡马天文台的落成,天文学史上翻开了新的一页。阿塔卡马天文台位于海拔5640米,为天文学家研究太空开辟了新的机遇。该地点已成为地面望远镜的最高位置,为研究人员提供了研究宇宙中红外波的独特工具。虽然海拔高,天空更晴朗,大气干扰也更少,但在高山上建设天文台却面临着巨大的困难和挑战。然而,尽管困难重重,新天文台为天文学家开辟了广阔的研究前景。 ... >>

来自档案馆的随机新闻

一种新的物质状态:玻色子晶体 19.06.2023

加州大学圣巴巴拉分校的一组物理学家做出了一项轰动的发现,揭示了由玻色子产生的独特材料的秘密。 到目前为止,科学界一直专注于费米子的研究,费米子是负责物质稳定性和相互作用的亚原子粒子。 然而,最新的突破开启了玻色子特殊性质研究的新篇章,并扩展了我们在基本粒子物理领域的知识。

通过将二硒化物和二硫化钨的晶格叠加在一种称为莫尔图案的特殊扭曲结构中,科学家们创造了一种高度有序的玻色子粒子晶体,称为激子。 这导致了一种新的物质状态的出现,称为“玻色相关绝缘体”。

玻色子与费米子的不同之处在于其独特的行为。 虽然费米子不能占据相同的能级,但玻色子很容易共享它,从而产生了它们的特殊性质。

加州大学圣塔芭芭拉分校凝聚态物理学专家金成浩教授解释说:“玻色子有能力占据相同的能级,而费米子则避免它。这种差异构成了我们观察到的宇宙的基础。” ”。

为了观察和识别材料中的激子,研究人员使用了“泵浦探针光谱”方法。 通过叠加两个光栅和强烈的照明,科学家们刺激了激子的形成和相互作用。 这种方法使得研究激子的行为并揭示其特性成为可能。

有趣的是,随着激子密度的增加,它们由于强相互作用而变得不动,从而形成高度有序的晶态和绝缘效应。 由于这些玻色子粒子之间的相关性,在一定密度下,它们将自身组织成对称且电中性的绝缘体。 这一发现是首次在真实的物质系统中而不是在合成条件下创造出这种材料。

科学家们指出:“我们已经建立了一种相关性,使玻色子进入高度有序的状态。我们创建了一个平台,用于研究以前不存在的真实材料中的玻色子。”

查看全文 科技新闻档案馆,新电子


本页所有语言

主页 | 图书馆 | 用品 | 网站地图 | 网站评论

www.diagram.com.ua

www.diagram.com.ua
2000-2024